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STABILIZABILITY OF TRIVIAL 
COUPLED SYSTEMS WITH 

STEADY MOTIONS OF GYROSCOPICALLY 
PSEUDO-CYCLIC COORDINATES* 

A.S. KLOKOV and V.A. SAMSONOV 

A qualitative analysis is carried out of the problem of the stabilization 
of steady motions of systems with pseudo-cyclical coordinates /l-3/. 
Established trivial motions with a non-zero instability of gyroscopically 
uncoupled systems cannot be stabilized /3/. The property of gyroscopic 
connectedness of a system presents certain stabilization possibilities. 

1. Suppose a mechanical system with r positional coordinates qi and n-r pseudo- 
cyclic coordinates is gyroscopically coupled, i.e. its kinetic energy has the form 

where q* q’, o are column-matrices of the positional coordinates of the 
cyclic velocities, A and B are positive definite synnnetric matrices, 
matrix. Their coefficients depend on the positional coordinates. 

Suppose that the generalized forces that correspond to positional 
and represent the sum of potential and dissipative forces 

positional and pseudo- 
and C is a rectangular 

coordinates are specified 

Qi = cil_’ dq, - Q,< 

The generalized forces Fj that correspond to pseudo-cyclic coordinates are assumed to be 
controlling and are subject to selection. 

Let the system admit of the trivial stabilized motion 

which means Lhat /3,/ 

Q” = collst (1.1) 

61 ,q,,: OH ly,.! 
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__L+.-=O (i,k,j=l,....r) (1.2) 
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The pseudo-cyclic velocities of stabilized motion !l.l) under condition (1.2) may be 
arbitrarily specified. 

2. The question of the stabilizahili?y of a trivial steady motion qO, w0 to a first 
approximaticn reduces to the analysis of Lagrange's equations linearized in the neighbourhood 
of the point 90. 00 

.4,r" - C,I)' - G,r' -+ DJ’ + H’,I = !I (2.1! 

z"TC, - Bj,l' = K,n - P,r + .Yji' (2.2) 

Here Di is the l-th row of matrix D (the linear part of the dissipative force Q,d: we assume 
that det D + 0). A,, C,. B, are the rows of the matrices A. C, B. and Ki. P/, >Yr are the rows 

of matrices h',P,.Y of linear controlling forces F',. All the coefficients of the system are 
calculated for Q = 40. 0 = 00. 

Note that for gyroscopically uncoupled mechanical systems c ss 0, and the subsystem 
(2.1) "splits off" from subsystem (2.2) which contains the controlling forces. But in the 
case considered here of CSO the subsystem (2.1) and (2.2) have a crossing connection via 
n' and I", that presents certain stabilization possibilities. Naturally, this problem is 

important first of all, when the matrix W is not positive definite. In particular, if W has 
1 negative eigenvalues (the degree of instability equals 1), the zero solution of subsystem 
(2.1) with condition 11'~ 0 is unstable (by virtue of the Kelvin-Chetayev theorem). 

To construct the stabilizing actions we will use the method described in /3/. We shali 
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stipulate that system (2.1) shall possess an asymptotically invariant manifold 

Tl + Ls + J1.r' = 0. 

For this it is sufficient that the system 

(2.3) 

y' = --yy, y = n j- Lr + JVr* (2.4) 

be identically satisfied by virtue of (2.1) and (2.2). In (2.4) T is a symmetric positive 
definite matrix. The selection of the matrices L, .V,y uniquely defines the coefficients of 
the matrices K,P,M of the controlling forces. 

The system (2.11, (2.2) has in the invariant manifold (2.3) the form 

A#’ + [Q* (D + G) + CB-lS,‘L] I’ + Q,Wx = 0 (2.5) 

A, = A - CB-‘CT, B, = B - VA-V 

S t = - B;’ 2 MA;=CB-1, T * = - B-lCTA-’ - MA-’ * *’ 

Q* = E - CB-‘S;‘T, 

where the matrices G, Ii- are formed by rows Gi, U'i)- 
The following statement holds: if the selection of the matrices L..l/ is such that the 

zero solution in system (2.5) becomes asymptotically stable, the steady motion q = qo, 61 = o,, 
is stabilizable. The coefficientsofthe matrices of the controlling forces that stabilize 
the established motion are given by the formulas 

K= S,_'\'. P = S,’ (yL - T*W) 

.Y = S,-' [gulf + L -. T, (D - G)] 

(2.6) 

The system (2.5) is of a general form. Its dimensions are determined only by the number 
of positional coordinates. 

Let us assume that the degree of instability I does not exceed the number of pseudo- 
cyclic coordinates (n - rj. It then becomes possible to select the matrix N, so that the 
matrix Q,11' is symmetric and positive definite. Then by a suitable selection of the matrix 
L we can make the symmetric part of the matrix composed of the coefficients of 1' in (2.5) 
positive definite. The matrices M and L selected in this way solve the problem of construct- 
ing the stabilized actions /4/. 

3. Let us illustrate the above ontheproblem of the stabilization of the steady trivial 
motions of a heavy gyroscope in gimbals with directed violation of symmetry and the vertical 
axis of rotation of the outer ring. 

Investigations of the steady motions of a perfect gyroscope are described in a number of 
papers (/3, 5/ and others). The term perfect gyroscope means a gyroscope whose inner ring 
axis is orthogonal to both the outer ring and the rotor axes, with all these axes intersecting 
at one point, and each of these is the principal axis of inertia of the respective body. 

Consider a system consisting of three rigid bodies: S1 the outer ring and SC the inner 
ring, respectively, and 5' the rotor located in the gravity field (Fig.1). The body S' is 
connected to the stationary base by means of a cylindrical hinge with axis 1' in the direction 
of the force of gravity. The bodies 

Fig.1 

S' and .s? are connected to each other by a cylindrical 
link with the i? axis intersecting the I1 axis at the 
point 0. We assume the rotor axis P is fixed in the 
body and the rotor masses are symmetrically distributed 
about the axis. The centre of mass of the rotor is 
denoted by 0,. 

We select u$J~,;,. OF211zF: and UU&~j3& as the moving 
systems of coordinates. The axes Oil. 06,. O,:,, coincide 
with the ,fs /'.'J, respectively.' The plane O&rl,o~o~;inOsz 

0;;. We denote the angle between _ 
by EI~I<~<N; i..p.v are the direction cosines-of the 
rotor axis I3 in the system E2lizL. 

The position of the system of bodies in space is 
defined by the Euler angles: $ is the angle of rotation 
of the outer ring, the angle of precession, 8 is the 
angle of rotation of the inner ring relative to the 
outer, the angle of nutation, and (r is the angle of 
rotation of the rotor about the 13 axis relative to the 
inner gimbal ring. We assume that %= 0, when the 13 
axis is in a plane parallel to 11 and I* (0 < 6 d n). 

We introduce the following notation: J is the moment 
of inertia of the outer gimbal ring about the 2' axis, 
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is the tensor of inertia of the inner gimbal ring in axes 0&1)~;~..4,, and B, are respectively 
the axial and equatorial moments of inertia of the rotor about the point O,,m,, m, are the 
masses of the inner gimbal ring, =I. Y1. 21 are the coordinates of the rotor centreofmass 0, and 
II. y>. 32 are the coordinates of the common mass of the inner gimbal ring and rotor in the 
system O&r&. 

The parameters of the gyroscope are assumed to satisfy the following conditions: 
v=o (the rotor axis 1" is parallel to plane O$h and coupled to the inner gimbal ring; 
I) = 0 (the common centre of mass of the inner gimbal ring and rotor is in the plane vE_I)~); 

The distribution of masses in the bodies is such that the equations 

are satisfied. 
The generalized force that corresponds to 

sum of the moment of the force of gravity with 

de’. 

the positional coordinate 8, represent the 
force function U and the dissipative force 

The control forces are the actions of the 
gimbal ring and of the moment F, of the motor 
gyroscope rotor. 

moment Fl of the motor rotating the outer 
on the inner gimbal ring and rotating the 

The kinetic energy and force function of the mechanical system considered here have the 
form /6, 7/ 

It ca_n be shown that condition (1.2) is satisfied when sini = (1. 
Thus among the steady motions of a gyroscope there are trivial ones %=O and $=rr. 

Note that, unlike the traditional case /3/, the gyroscope rotor in the trivial motion performs 
a regular precession (the angle between the stationary axis I1 and the rotor axis is non-zero), 
and the angular velocities of prcession o, and of the proper rotation GJ) may be arbitrary, 

We restrict the investigation to the motion 6= (1. w1 = conit. c~,:= conct. The equations in 
deviations (2.1!, (2.2) have the form 

ar" L C,?il' - ~~11~‘ - dr’ - H’.r = 0 
c,1” - b,,ljl’ - bill;,’ = h,qi 2 Jl?q - .\ ?, - P,’ 
c+“ - b,,q; - h,,ql’ = h .n, - ~‘,II, - .I _ - P,I 

H = ' 2 {IC, .- (B, - A,,\ : II -- c 7,4>1 Cl,, 't - 2 IL?. - c 1 - 1.4.. - 
8 ,,2_ I 1:; - y,: ' > I > / vi,: - A I, F:,, >,,,,'.1_ -~ f) - i: 5 ;y_ <,I, i 

where K,.h,. h.. K,..\.,..\:. P,. P?are the coefficients of the controliing forces F,. F?. 

Consider the case W<v which occurs when ('I,= I,,?= 0 and y!<O, when the gyroscope is 
in such equilibrium that its centre of mass is above the point of suspension. Without control 

actions that equilibrium is unstable. 
Equation (2.5) in that case has the form 

It is obvious that for stabilization it is sufficient to Select the coefficients 1,. L:, 

n1,. Al, of the matrices L. df so that the inequality A1<(l. S<O is satisfied. 
The coefficients of the matrices of the control forces are calculated from (2.6). 
Since the mechanical system considered here has only one positional coordinate and two 

pseudo-cyclical coordinates, there is some arbitrariness in the selection of L,, L,, Al,. Mz 

These coefficients may, in particular, be selected so that the control actions will depend 
either on the positional coordinate or on the positional velocity. 

The property of gyrosccpic connectedness thus provides new qualitative possibilities in 
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the problem of stabilizing steady motions. 
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NORMAL OSCILLATIONS OF A STRING WITH CONCENTRATED MASSES ON 
NON-LINEARLY ELASTIC SUPPORTS* 

E.G. VEDENOVA, L.I. MANEVICH, and V.N. PILIPCHUK 

The problem of constructing and classifying normal oscillations of a string 
with concentrated masses on non-linearly elastic supports is considered 
(special limit cases are linear and vibro-impact systems). It is shown 
that in the limit of intensive impact action, the non-linear system has 
supplementary properties of synnnetry which enables this problem to be 
solved effectively. On the other hand, the normal oscillations of a 
vibro-impact system can be used as the generating solutions for dynamic 
calculations of essentially non-linear systems that are close to them. 
The connection between localized normal oscillations and solutions of the 
soliton type are discussed. 

The existence of normal oscillations as special particular SolUtiOnS of linear conservative 
system is due to the properties of symmetry inherent in it that can be partly retained in the 
non-linear case /l, 2/. The possibility of constructing in some strongly non-linear system 
synchronous motions that have a number of properties of normal linear oscillations /3, 4/ is 
related to this property. The normal "principal" oscillations have already been considered 
by Lyapunov /5/. Due to these properties a multidimensional non-linear system in the normal 
oscillation mode behaves as a non-linear oscillator. 

1. Consider the transverse oscillations of a regular chain of masses connected to each 
other by a weightless string, and interacting with non-linearly elastic supports (Fig.1) which 
in the limit become rigid limiters with some gap 2e. The reaction of the j-th support is 

qj = a (a,,'@-' 

where Uj is the deflection of the string in the respective cross section, n is an integer, 
and a is the stiffness parameter. 

Among the various type of motions of non-linear systems are those of the simplest mode, 
such as normal oscillations. When n = 1 (a string with concentrated masses on linearly 
elastic supports) we have A' normal oscillations; the spectrum of respective natural frequencies 
is discrete and limited. 

When n> i we distinguish the cases of strong and weak connection along the string. 
In the first case the non-linearity is small and the system belongs to the Lyapunov class of 
systems /5/. We thus have the problem of constructing non-linear normal oscillations which, 
as the amplitude decreases,becomenormal oscillations of a normalized system. This simple 
case is not considered further. 
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